Determination of a Magnetic Component to the Superconducting Condensation Energy for Fe$_{1+x}$Se$_x$Te$_{1-x}$

JONATHAN LEINER, Oak Ridge National Lab, VIVEK THAMPY, Brookhaven National Lab, MARK LUMSDEN, ANDREW CHRISTIANSON, DOUGLAS ABERNATHY, BRIAN SALES, ATHENA SEFAT, Oak Ridge National Lab, ZHIQIANG MAO, JIN HU, Tulane University, WEI BAO, Renmin University of China, COLLIN BROHOLM, Johns Hopkins University — A quantitative method to extract a magnetic component of the superconducting condensation energy from inelastic neutron scattering data is described and applied to Fe$_{1+x}$Se$_{0.4}$Te$_{0.6}$. Based on the first moment sum-rule for the dynamic correlation function, the method is sensitive to changes in the inter-site magnetic correlation energy, ΔE_{ij}, associated with superconductivity. We find the length scale over which ΔE_{ij} is appreciable coincides with the superconducting coherence length as determined by Scanning Tunneling Microscopy. The overall change in inter-site magnetic correlation energy is compared to the superconducting condensation energy determined through specific heat measurements.

1Supported by ORNL LDRD funding

Jonathan Leiner
Oak Ridge National Lab

Date submitted: 15 Nov 2013