Abstract Submitted for the MAR14 Meeting of The American Physical Society

First Principles Study of Electronic Properties of MoS₂/HfO₂ Interface¹ SANTOSH KC, ROBERTO C. LONGO, ROBERT M. WALLACE, KYEONGJAE CHO, Univ of Texas, Dallas — Monolayer MoS_2 is direct band gap two dimensional (2D) semiconductor which has been recently investigated for lowpowered field effect transistors and shown promising performance of high on/off current ratio (10⁸) and a carrier mobility $\sim 200 \text{ cm}^2/\text{Vs}$ with a high-k gate dielectric [1]. For a detailed understanding of the MoS_2 electronic devices, it is important to examine the detailed atomic and electronic structures of the MoS_2/HfO_2 interface. We have developed a lattice matched MoS_2/HfO_2 interface model, and investigated the interface atomic structures and the corresponding electronic structures using the density functional theory (DFT) calculations. The model interface was extensively investigated as a function of oxygen and hydrogen incorporation representing different HfO₂ growth conditions on MoS₂. The interface formation energies show strong effects of interfacial oxygen content and the valence band offset. In situ XPS study of HfO_2 ALD on MoS_2 shows that the experimental MoS_2/HfO_2 interface properties are consistent with DFT results [2]. These studies can be extended to other TMDs in an effort to identify most promising candidates for electronic device applications.

[1] B. Radisavljevic et.al, Nat. Nanotechnol. 6, 147 (2011).

[2] S. McDonnell et. al. ACS Nano (Just Accepted).

¹Supported by Center for Low Energy Systems Technology (LEAST)

Santosh KC Univ of Texas, Dallas

Date submitted: 15 Nov 2013

Electronic form version 1.4