Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

First Principles Study of Electronic Properties of MoS$_2$/HfO$_2$ Interface1 SANTOSH KC, ROBERTO C. LONGO, ROBERT M. WALLACE, KYEONGJAE CHO, Univ of Texas, Dallas — Monolayer MoS$_2$ is direct band gap two dimensional (2D) semiconductor which has been recently investigated for low-powered field effect transistors and shown promising performance of high on/off current ratio (10^8) and a carrier mobility ~ 200 cm2/Vs with a high-k gate dielectric [1]. For a detailed understanding of the MoS$_2$ electronic devices, it is important to examine the detailed atomic and electronic structures of the MoS$_2$/HfO$_2$ interface. We have developed a lattice matched MoS$_2$/HfO$_2$ interface model, and investigated the interface atomic structures and the corresponding electronic structures using the density functional theory (DFT) calculations. The model interface was extensively investigated as a function of oxygen and hydrogen incorporation representing different HfO$_2$ growth conditions on MoS$_2$. The interface formation energies show strong effects of interfacial oxygen content and the valence band offset. In situ XPS study of HfO$_2$ ALD on MoS$_2$ shows that the experimental MoS$_2$/HfO$_2$ interface properties are consistent with DFT results [2]. These studies can be extended to other TMDs in an effort to identify most promising candidates for electronic device applications.

1Supported by Center for Low Energy Systems Technology (LEAST)

Santosh KC
Univ of Texas, Dallas

Date submitted: 15 Nov 2013

Electronic form version 1.4