Abstract Submitted for the MAR14 Meeting of The American Physical Society

Epitaxial growth of²⁸Si enriched in situ to 99.9998% for quantum information KEVIN DWYER, MSE, University of Maryland, College Park, JOSHUA POMEROY, DAVID SIMONS, National Institute of Standards and Technology - In support of quantum information devices, we epitaxially deposit >100 nm 28 Si films enriched *in situ* to >99.9998 % isotope fraction at high temperature. Using our silicon enrichment ion beam deposition source, we explore electrical and structural properties of our 28 Si films using *in situ* reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM) and electrical measurements including capacitance-voltage profiling. Secondary ion mass spectrometry (SIMS) is used to show 28 Si films have residual 29 Si isotope fractions <1 ppm (40 times less than previously reported 28 Si sources). We also demonstrate the ability to produce isotope heterostructures with applications including ²⁸Si/²⁸Si⁷⁴Ge quantum wells. ²⁸Si is a critical material for quantum computing as removal of ²⁹Si spins means qubits such as phosphorous atoms can have nuclear coherence (T_2) times of minutes even up to room temperature and can be addressed optically due to hyperfine transitions not normally resolvable in natural Si. Despite these advantages, 28 Si is quite scarce making it clear that an alternate source such as the one we demonstrate is needed.

> Kevin Dwyer MSE, University of Maryland, College Park

Date submitted: 15 Nov 2013

Electronic form version 1.4