First-principles calculation of mobility in silicon

YUNING WU, Vanderbilt University, X.-G. ZHANG, Oak Ridge National Laboratory, SOKRATES T. PANTELIDES, Vanderbilt University — We introduce a new first-principles method to calculate Coulomb-scattering-limited electron mobility in silicon. The lifetime of a Bloch state due to scattering can be interpreted as arising from an additional imaginary part of electron self-energy. By introducing an artificial imaginary potential, the electron self-energy can be extracted from the complex band structure of a periodic system while eliminating the interference effect due to multiple scattering between impurities. This allows an implementation using density functional theory within the Quantum-Espresso package. The calculated electron mobility agrees with the experimental data.

1A portion of the research is conducted at the CNMS sponsored at ORNL by the Office of Basic Energy Sciences, U.S. Department of Energy.