Abstract Submitted for the MAR14 Meeting of The American Physical Society

Doping-dependent vortex-state scanning tunneling spectroscopic (STS) studies of Ca-doped $YBa_2Cu_3O_{7-\delta}(Y-123)^1$ M.L. TEAGUE, C.-C. CHEN, N.-C. YEH, Dept. of Physics, Caltech, Pasadena, CA 91125, Z.J. FENG, Dept. of Physics, Shanghai University, Shanghai, China — We present STS studies of Ca-doped Y-123 as a function of magnetic field (H) and hole doping level (p). Our previous STS studies at H = 0 have shown that the origin of the pseudogap (PG) is due to competing orders (COs), and that the presence (absence) of PG above the superconducting (SC) transition T_c is associated with a CO energy $\Delta_{\rm CO}$ larger (smaller) than the SC gap Δ_{SC} . Moreover, Δ_{SC} and Δ_{CO} decrease with increasing p for p > 0.16, and $\Delta_{\rm CO} < \Delta_{\rm SC}$ for p > 0.23. The pairing symmetry also evolves from pure $d_{x^2-y^2}$ to $(d_{x^2-y^2}+s)$ for p > 0.16, where the s-wave component increases with p. Here we investigate the evolution of vortex-state (H > 0) STS with p. For p =0.21 and H = 3T, STS reveal the presence of vortices with a vortex "halo" size $\xi \sim$ 8 nm, smaller than $\xi \sim 10$ nm for p = 0.16. A PG with $\Delta_{\rm CO}$ (~ 11 meV) $<\Delta_{\rm SC}$ (~ 17 meV) is found inside the vortex core for p = 0.21, which is consistent with the value derived from Green function analysis of the STS in H = 0 and is in contrasts to the finding of an intra-vortex PG $\Delta_{\rm CO}$ (~ 32 meV) > $\Delta_{\rm SC}$ (~ 23 meV) for p =0.16. Fourier transformation of the STS also shows energy-independent wave-vectors Q_{CDW} and Q_{PDW} associated with the charge- and pair-density waves, where Q_{CDW} decreases with p and Q_{PDW} is p-independent.

¹Work supported by NSF through IQIM at Caltech.

Marcus Teague Dept. of Physics, Caltech, Pasadena, CA 91125

Date submitted: 15 Nov 2013

Electronic form version 1.4