Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

High
temperature ferroelectricity and ferrimagnetism in LnACrOsO$_6$ by design

HENA DAS, SAURABH GHOSH, AEP, Cornell University, Ithaca, NY, USA,
MARTHA GREENBLATT, Dept of C. C. B., Rutgers University, Piscataway, NJ,
USA, TANUSRI SAHA-DASGUPTA, S.N. Bose National Centre for Basic Sciences,
Kolkata, India, CRAIG FENNIE, AEP, Cornell University, Ithaca, NY, USA —
Despite intense efforts over the last decade, there are surprisingly few multiferroics
in which a net magnetization coexists with a switchable polarization at room tem-
perature. Since magnetism tends to be the harder problem, one approach to solve
this challenge is to start with a material that is magnetically ordered at room tem-
perature and drive it ferroelectric. In this regard, the double perovskite Sr$_2$CrOsO$_6$
is a promising candidate; it is ferromagnetic and insulating with a $T_c = 725$ K, the
highest known T_c of any magnetic insulating oxide with appreciable uncompensated
magnetic moment. Here we discuss our first-principles study of the ferroic proper-
ties of as not yet synthesized 3d-5d double perovskites, LnACrOsO$_6$ ($Ln = La, Y,$
Ce-Lu; $A = Na, K$). We identify polar compounds that have moderate polarization
switching barriers and display ferrimagnetism that is expected to persist above room
temperature.

Hena Das
AEP, Cornell University, Ithaca, NY, USA

Date submitted: 15 Nov 2013 Electronic form version 1.4