Abstract Submitted for the MAR14 Meeting of The American Physical Society

Competition Between Antiferromagnetism and Ferromagnetism in Sr_2RuO_4 Probed by Mn and Co Doping ZHIQIANG MAO, JOHN ORT-MANN, JINYU LIU, JIN HU, Tulane University, M. ZHU, Michigan State University, JIN PENG, Tulane University, M. MATSUDA, Oak Ridge National Laboratory, XIANGLIN KE, Michigan State University — Spin-triplet superconductivity in Sr_2RuO_4 has attracted enormous interest. Like other unconventional superconductors, superconductivity in Sr_2RuO_4 is in close proximity to magnetic instability. Undoped Sr_2RuO_4 exhibits incommensurate antiferromagnetic (AFM) fluctuations, which can evolve into static, short-range AFM order via Ti doping. Moreover, weak ferromagnetic (FM) coupling in Sr_2RuO_4 has also been suggested by NMR/neutron scattering experiments and studies on $Ca_{2-x}Sr_xRuO_4$ and $Sr_{2-y}La_yRuO_4$. In this talk, we will report bulk static, short-range FM order in Sr_2RuO_4 triggered by < 2%Co doping, showing superconductivity in Sr_2RuO_4 is much closer to FM instability than previously reported in $Ca_{2-x}Sr_{x}RuO_{4}$. We also find Mn doping can effectively establish incommensurate AFM order, with $T_N \sim 50$ K for 3% Mn doping. These new results highlight the important role of competing magnetic fluctuations in determining superconducting properties of $Sr_2RuO_4[1]$.

[1] Ortmann et al., Scientific Report 3, 2950 (2013).

Ludi Miao Tulane University

Date submitted: 15 Nov 2013

Electronic form version 1.4