Effect of Oxygen on Sublimation Growth of Graphene on C-face SiC

ZACHARY ROBINSON, GLENN JERNIGAN, KONRAD BUSSMANN, MARC CURRIE, RACHAEL MYERS-WARD, VIRGINIA WHEELER, U.S. Naval Research Laboratory, LUKE NYAKITI, Texas A&M, SATOSHI OIDA, JAMES HANNON, IBM T.J. Watson Research Laboratory, CHIP EDDY, D. KURT GASKILL, U.S. Naval Research Laboratory — Graphene grown on Si-face SiC has demonstrated improved thickness uniformity when formed in an argon environment. For C-face growth, expected to yield graphene with superior electronic properties, similar progress has not yet been achieved. A systematic study of C-face SiC surface preparation and graphene growth in an argon environment has been carried out in a high temperature chemical vapor deposition system modified for low pressure sublimation. For all growth conditions investigated, the resulting graphene films were found to have non-uniform thickness. Further, x-ray photoelectron spectroscopy (XPS) measurements reveal significant amounts of oxygen on the surface, which has been suggested to cause the non-uniformity [1]. Thus, a sample was transferred to an ultra-high vacuum (UHV) system equipped with in situ XPS, where a UHV anneal of 1200°C was shown to be necessary to desorb the oxygen. Post-anneal exposure to atmospheric conditions resulted in the return of only 20% of the original oxygen concentration, suggesting that a robust oxide may be present during growth. Preliminary low energy electron microscopy results confirm that trace amounts of oxygen significantly affects the graphene growth process.


1The author would like to thank ASEE for postdoctoral support.