Abstract Submitted for the MAR14 Meeting of The American Physical Society

Symmetry measurements of the order parameter of $BaFe_2As_2$ superconductors JUAN ATKINSON, DALE VAN HARLINGEN, Univ of Illinois - Urbana, PAUL CANFIELD, Iowa State Univ — Since the discovery of the Fepnictide superconductors, extensive efforts have been directed toward understanding the symmetry and mechanism of the superconducting pairing. Extended s-wave models, predominantly the $s\pm$ model, are predicted by many theories, but a definitive experimental verification has been elusive. In this case, the phase-sensitive Josephson interferometry measurements that have been effective in determining the symmetry of many superconductors do not give a definitive signature. As an alternative approach, we are searching for proximity-induced structure in the density-of-states of an s-wave superconductor proximity-coupled to Co-doped $BaFe_2As_2$ superconductive crystals. Unique features are predicted to arise for $s\pm$ pairing that allow this symmetry to be distinguished from other order parameter forms such as s++ or d-wave. Observation of this structure would provide both magnitude and phase information about the multigap structure of the $BaFe_2As_2$ crystal.

¹Work supported by the DOE grant BNL-150252 through the EFRC for Emergent Superconductivity.

Juan Atkinson Univ of Illinois - Urbana

Date submitted: 15 Nov 2013 Electronic form version 1.4