Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

Tribo-induced melting transitions and internal friction at magnetic and nonmagnetic asperity contacts

JACQUELINE KRIM, LIMING PAN, KEELEY STEVENS, North Carolina State University — We report a study of tribo-induced nanoscale surface melting mechanisms that employs a combined QCM-STM technique [1] for a range of Au and Au-Ni alloys with varying compositional percentages and phases [2]. A transition from solid-solid to solid-“liquid like” contact was observed for most samples at sufficiently high asperity sliding speeds. Pure gold, solid-solution and two-phase Au-Ni (20 at.% Ni) alloys were compared [3]. Samples with 5-20% nickel alloyed with gold were deposited as a homogenous solid-solution or as a two-phase FCC solid through the modification of annealing procedures. The solid solution is known to be paramagnetic for concentrations below 35% Ni while the two phase solid maintains domains of ferromagnetism within bulk gold. A “flexing” effect associated with the application of an external magnetic field on the two-phase alloy samples illuminates physical mechanisms that correlate with the observed tribo-induced melting temperatures [4].


NSF is acknowledged support for this research. D.J. Lichtenwalner and A.I. Kingon are thanked for assistance in sample preparation.

Jacqueline Krim
North Carolina State University

Date submitted: 15 Nov 2013

Electronic form version 1.4