Dynamics close to the many-body localization transition1

YEVGENY BAR LEV (KRIVOLAPOV), DAVID R. REICHMAN, Columbia University — It has recently been suggested that in a generic class of disordered and (short-ranged) interacting quantum systems a dynamical metal-insulator transition may occur at finite temperatures. This proposed phenomenon is called many-body localization (MBL). In this work we study the real-time dynamics of this transition for a range of parameters where the transition should manifest according to theory and recent numerical studies. For this purpose, we numerically solve the non-equilibrium quantum kinetic equations in the self-consistent second-Born approximation, the same approximation used in the original prediction of MBL. For accessible times, we observe a complex sequence of dynamical regimes. Surprisingly we find little change of behavior upon crossing the putative dynamical phase boundary as determined by previous numerical studies.

1This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. The work was supported by grant NSF-CHE-1213247.