Abstract Submitted for the MAR14 Meeting of The American Physical Society

Optimizing filtering for fast measurements in circuit QED JAY GAMBETTA, OLIVER DIAL, ANDREW CROSS, DOUGLAS MCCLURE, JERRY CHOW, MATTHIAS STEFFEN, IBM T.J. Watson Research Center — Quantum error correction schemes, for example the popular surface code, involve running interleaved gate operations and measurements on a set of physical qubits. For this reason it is important to have fast measurements. In a fast measurement most of the information will be in the transients of the signal. In this talk we present a filtering technique to extract optimal qubit state information from the transient response of the resonator. I will also discuss techniques for rapidly driving the readout resonator to its ground state independent of the qubit state. We acknowledge support from IARPA under contract W911NF-10-1-0324.

> Jay Gambetta IBM T.J. Watson Research Center

Date submitted: 15 Nov 2013

Electronic form version 1.4