Abstract Submitted for the MAR14 Meeting of The American Physical Society

Doping study of the heavy fermion superconductor $\text{CePt}_2\text{In}_7^{-1}$ NIRMAL GHIMIRE, FILIP RONNING, J. THOMPSON, ERIC BAUER, Los Alamos National Laboratory — The CeMIn₅ (M=Co, Rh, Ir) materials are prototypical heavy fermion superconductors close to antiferromagnetism, making them ideal candidates to investigate the interplay of unconventional superconductivity and magnetism and to explore quantum criticality. $CeRhIn_5$ displays all of the signatures of a material close to an antiferromagnetic quantum critical point (QCP): 1) the antiferromagnetism at $T_N = 3.8$ K is suppressed under applied pressure at Pc=2.5 GPa, 2) non-Fermi liquid behavior in the electrical resistivity and specific heat is observed near Pc, and 3) a dome of unconventional superconductivity appears with Tc max=2.6 K. To investigate the nature of the quantum criticality in the $Ce_m M_n In_{3m+2n}$ family, we focus attention on the newest member, $CePt_2In_7$, with m=1 and n=2, where m and n are CeIn₃ and MIn₂ layers. Similar to its cousin CeRhIn₅ (m=1, n=1), it shows a dome of superconductivity and signatures of quantum criticality under pressure in the vicinity of where the Neel temperature is suppressed at Pc=3 GPa. As an alternative to the application of pressure to access the QCP, we present the magnetic, thermal and transport properties of doped CePt₂In₇.

¹Work at Los Alamos was performed under the auspices of the US DOE

Nirmal Ghimire Los Alamos National Laboratory

Date submitted: 15 Nov 2013

Electronic form version 1.4