Structured block copolymer thin film composites for ultra-high energy density capacitors1 SAUMIL SAMANT, University of Akron, SHIME LIS HAILU, Howard University, CHRISTOPHER GRABOWSKI, MICHAEL DURSTOCK, Air Force Research Lab, WPAFB, DHARMARAJ RAGHAVAN, Howard University, ALAMGIR KARIM, University of Akron — Development of high energy density capacitors is essential for future applications like hybrid vehicles and directed energy weaponry. Fundamentally, energy density is governed by product of dielectric permittivity ε and breakdown strength V_{bd}. Hence, improvements in energy density are greatly reliant on improving either ε or V_{bd} or a combination of both. Polymer films are widely used in capacitors due to high V_{bd} and low loss but they suffer from very low permittivities. Composite dielectrics offer a unique opportunity to combine the high ε of inorganic fillers with the high V_{bd} of a polymer matrix. For enhancement of dielectric properties, it is essential to improve matrix-filler interaction and control the spatial distribution of fillers for which nanostructured block copolymers BCP act as ideal templates. We use Directed Self-assembly of block copolymers to rapidly fabricate highly aligned BCP-TiO$_2$ composite nanostructures in thin films under dynamic thermal gradient field to synergistically combine the high ε of functionalized TiO$_2$ and high V_{bd} of BCP matrix. The results of impact of BCP morphology, processing conditions and concentration of TiO$_2$ on capacitor performance will be reported.

1U.S. Air Force of Scientific Research under contract FA9550-12-1-0306