Abstract Submitted for the MAR14 Meeting of The American Physical Society

Glass transition of star-shaped thin polymer films EMMANOUIL GLYNOS, BRADLEY FRIEBERG, University of Michigan, GEORGIOS SAKEL-LARIOU, University of Athens, PETER GREEN, University of Michigan — We show that the glass transition temperatures, $T_{\rm g}$, of thin polystyrene (PS) films, supported by oxidized silicon substrates (SiOx), depends on functionality, f, and the degree of polymerization of the arm, N_{arm} , of the macromolecule. The T_{gs} of star-shaped PS films with thickness H=30nm, $T_{\rm g}(30nm)$ with f as high as 64 were investigated. The $T_{\rm g}(30\,{\rm nm})$ of linear PS thin films, is less than the average bulk $T_{\rm g}$, $T_{\rm g}$ (bulk). For molecules of N_{arm} about100, the $T_{\rm g}$ (30nm) of a macromolecule with f = 3 was equal to that of a linear PS. However, the $T_{\rm g}(30 {\rm nm})$ increased with increasing f, reaching a maximum of at f = 8 where $T_g(30nm)$ was higher than $T_g(bulk)$. For larger values of f, T_g (30nm) decreased monotonically with increasing f and for f = 64 the $T_{\rm g}(30$ nm) became comparable to $T_{\rm g}($ bulk). The magnitude of this effect is weaker for much larger values of N_{arm}. We rationalized these observations in term of two competing entropic: the increasing entropic attraction of the macromolecules to interfaces, with increasing f, and an increasing intermolecular entropic repulsion of these macromolecules with increasing f, and/or decreasing N_{arm}.

> Emmanouil Glynos University of Michigan

Date submitted: 15 Nov 2013

Electronic form version 1.4