Ultra-low power microwave manipulation of electron spin ensembles1 A.J. SIGILLITO, H. MALISSA2, A.M. TYRYSHKIN, S.A. LYON, Department of Electrical Engineering, Princeton University — Superconducting coplanar waveguide (CPW) resonators are a promising alternative to standard dielectric resonators for many electron spin resonance experiments. Their high sensitivity and low power requirements make them particularly well suited to applications where the sample volume is small and when microwave heating is a concern. Experiments utilizing rectangular pulses are possible with a peak microwave power of less than 1\textmu W for 400\textmu s pi-rotations, and under 100 \textmu W of peak power for 40\textmu s pi-rotations. However, CPW resonators have an inherently inhomogeneous microwave magnetic field (B_1). Therefore, to uniformly rotate all spins in a sample, adiabatic microwave pulses must be used. Here we report on the use of such pulses to correct B_1 inhomogeneities spanning an order of magnitude. We also present data indicating single shot sensitivity to 1×10^7 phosphorus donors in isotopically enriched 28Si at 1.7K. These show that superconducting CPW resonators are fully compatible with experiments requiring rapid manipulation of spins in dilution refrigerators.

1This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).
2Current address is Department of Physics, The University of Utah.

Anthony Sigillito
Princeton University

Date submitted: 15 Nov 2013

Electronic form version 1.4