Bipolar Doping Control in Sputter-deposited Cu₃N Thin Films as a Function of Growth Conditions

1 ANGELA FIORETTI, Natl Renewable Energy Lab, Colorado School of Mines, STEVEN CHRISTENSEN, DAVID S. GINLEY, Natl Renewable Energy Lab, ERIC S. TOBERER, Natl Renewable Energy Lab, Colorado School of Mines, ANDRIY ZAKUTAYEV, Natl Renewable Energy Lab — Experimental evidence of Cu₃N defect-tolerance has been observed in that it can be doped either n-type or p-type based solely on growth conditions. In this presentation, the control of bipolar doping behavior as a function of growth conditions in Cu₃N is demonstrated, and hypotheses as to the underlying physics of this behavior are explored. Thin films of Cu₃N were deposited using reactive RF-magnetron sputtering. Growth temperature and target power density were varied respectively in two sets of experiments. For both sets, Hall effect and Seebeck coefficient measurements were used to characterize carrier type. Furthermore, NEXAFS measurements were performed to investigate the fundamental differences in structure that may give rise to Cu₃N bipolar doping. Cu₃N grown under conditions in which the activity of nitrogen was low exhibited n-type conductivity, while films grown under conditions in which the activity of nitrogen was high exhibited p-type conductivity. NEXAFS measurements revealed the presence of mixed Cu valence (both Cu⁺¹ and Cu⁺²), and this discovery helped to shed light on the underlying physics behind Cu₃N bipolar doping behavior.

1This research is supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy.

Angela Fioretti
Natl Renewable Energy Lab

Date submitted: 15 Nov 2013