Tomography via Correlation of Noisy Measurement Records

COLM RYAN, BLAKE JOHNSON, BBN Technologies, JAY GAMBETTA, JERRY CHOW, IBM T.J. Watson Research Center, MARCUS SILVA, BBN Technologies, OLIVER DIAL, IBM T.J. Watson Research Center, THOMAS OHKI, BBN Technologies — We present methods and results of shot-by-shot correlation of noisy measurements to extract entangled state and process tomography in a superconducting qubit architecture. We show that averaging continuous values, rather than counting discrete thresholded values, is a valid tomographic strategy and is in fact the better choice in the low signal-to-noise regime. We show that the effort to measure N-body correlations from individual measurements scales exponentially with N, but with sufficient signal-to-noise the approach remains viable for few-body correlations. We provide a new protocol to optimally account for the transient behavior of pulsed measurements. Despite single-shot measurement fidelity that is less than perfect, we demonstrate appropriate processing to extract and verify entangled states and processes.

1 This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office contract no. W911NF-10-1-0324.