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Understanding Machine-learned Density Functionals1 LI LI, JOHN
SNYDER, Department of Physics and Astronomy, University of California, Irvine,
MATTHIAS RUPP, Department of Chemistry, University of Basel, KLAUS-
ROBERT MÜLLER, Machine Learning Group, Technical University of Berlin,
KIERON BURKE, Department of Chemistry, University of California, Irvine —
Recently, some of us applied machine learning (ML) in a completely new approach
to approximating density functionals [1,2]. In a proof of principal, kernel ridge
regression was used to approximate the kinetic energy of non-interacting fermions
confined to a 1d box as a functional of the electron density [1]. In that work, a mod-
ified orbital-free DFT scheme was able to produce highly accurate self-consistent
densities and energies, which were systemically improvable with additional training
data. In this work, we explore the properties of the ML approximated functional
derived in [1]. In particular, we investigate the use of various kernels and their
properties and compare various cross validation methods. We discuss the issue of
functional derivatives in greater detail, explain how a modified constraint to the
standard Euler equation enables highly accurate self-consistent densities, and derive
a projected gradient descent algorithm using local principal component analysis. Fi-
nally, we explore the use of a sparse grid representation of the electron density and
its effects on the method.
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