Abstract Submitted for the MAR14 Meeting of The American Physical Society

Hyperpolarization of ²⁹Si by Resonant Nuclear Spin Transfrom Optically Hyperpolarized ³¹P Donors PHILLIP DLUHY, JEFF SALVAIL, KAMYAR SAEEDI, MIKE THEWALT, Simon Fraser University, STEPHANIE SIMMONS, Oxford University — Recent developments in nanomedicine have allowed nanoparticles of silicon containing hyperpolarized ²⁹Si to be imaged in vivo using magnetic resonance imaging. The extremely long relaxation times and isotropy of the Si lattice make polarized ²⁹Si isotopes ideal for these sorts of imaging methods. However, one of the major difficulties standing in the path of widespread adoption of these techniques is the slow rate at which the ²⁹Si is hyperpolarized and the limited maximum hyperpolarization achievable. In this talk, I will describe an effective method for hyperpolarization of the ²⁹Si isotopes using resonant optical pumping of the donor bound exciton transitions to polarize the ³¹P donor nuclei, and a choice of static magnetic field that conserves energy during spin flip flops between donor nuclear and ²⁹Si spins to facilitate diffusion of this polarization. Using this method, we are able to polarize greater than 10% of the ²⁹Si centers in 64 hours without seeing saturation of the ²⁹Si polarization.

> Phillip Dluhy Simon Fraser University

Date submitted: 15 Nov 2013 Electronic form version 1.4