Abstract Submitted for the MAR14 Meeting of The American Physical Society

Nuclear spin coherence of neutral ³¹P donors in isotopically enriched ²⁸Si¹ E.S. PETERSEN, A.M. TYRYSHKIN, S.A. LYON, Princeton Univ, S. TOJO, K.M. ITOH, Keio Univ, M.L.W. THEWALT, Simon Fraser Univ, H. RIE-MANN, N.V. ABROSIMOV, IKZ, P. BECKER, PTB Braunschweig, H.-J. POHL, VITCON — In natural silicon the nuclear spin coherence of neutral ${}^{31}P$ donors is limited to about 1 second by flip-flopping ²⁹Si nuclear spins. Here we eliminate this process by using isotopically enriched 28 Si with 50 ppm of 29 Si. This allows us to examine other processes which may decohere the ³¹P nuclear spins. We use X-band pulsed ENDOR at 1.7 K to examine isotopically enriched Si crystals with donor concentrations from 10^{14} to 4×10^{15} P/cm³ and find a dependence of ³¹P nuclear spin coherence time on donor concentration. The measured nuclear spin echo decays are fit by a stretched exponential function, $\exp(-(t/T_2)^n)$, with n ranging from 0.7 to 1. This differs from n of about 2 commonly seen for spectral diffusion due to indirect spin flip-flops. The measured T_2 times decrease significantly when the donor concentration increases, changing from 8 s at 10^{14} to 0.2 s at 4×10^{15} P/cm³. From the observed donor concentration dependence at higher densities, we conclude that direct electron spin flip-flops are responsible for ³¹P donor nuclear spin decoherence.

¹This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).

Evan Petersen Princeton Univ

Date submitted: 15 Nov 2013

Electronic form version 1.4