Boundary Magnetization and Exchange Bias of Boron Doped Cr$_2$O$_3$ Pinning Layers1 MICHAEL STREET, WILL ECHTENKAMP, PETER DOWBEN, CHRISTIAN BINEK, Univ of Nebraska - Lincoln — This research is part of an effort to utilize voltage-controlled boundary magnetization (BM) in the magnetoelectric (ME) Cr$_2$O$_3$ for spintronic applications. We exploit the electric switchable boundary magnetic moment (MM) of Cr$_2$O$_3$. The net MM at the interface can be useful to manipulate the magnetic states of an adjacent ferromagnetic (FM) material. Using a FM Pd/Co multilayer deposited on Cr$_2$O$_3$, reversible, room-temperature isothermal switching of the exchange bias field has been achieved by reversing the electric field. The voltage-controlled magnetization of the FM layer can be utilized as a state variable. However, to use voltage-controlled BM as a key spintronic material for devices operating at room temperature, the Néel temperature T_N of the ME antiferromagnet must be increased above the bulk value of $T_N = 307$ K of pure Cr$_2$O$_3$. First principles calculations show that boron doping of Cr$_2$O$_3$ can increase T_N. We diagram structural and magnetic characterizations of pure and B-Cr$_2$O$_3$ grown on Al$_2$O$_3$. An increase in T_N of 120 K is achieved making Cr$_2$O$_3$ suitable for room temperature spintronic applications. Further, we attempt to create an exchange bias (EB) system using a FM Pd/Co multilayer on B-doped Cr$_2$O$_3$. From this, we attempt to switch the EB field via the electric field.

1This project is supported by NSF through MRSEC DMR 0213808, by the NRC/NRI supplement to MRSEC, and by STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

Michael Street
Univ of Nebraska - Lincoln

Date submitted: 15 Nov 2013