Abstract Submitted for the MAR14 Meeting of The American Physical Society

High Pressure Light Scattering Study of Relaxation in the Glass Former Cumene¹ TIM RANSOM, KEVIN LYON, WILLIAM OLIVER, University of Arkansas — To understand relaxation dynamics in glassy systems, a light scattering study on Cumene has been carried out in a diamond anvil cell (DAC) at pressures from 0.2 GPa to 2.5 GPa isothermally at 75 °C. Polarized and depolarized spectra were taken in both near-backscattering and equal-angle 60° forwardscattering geometries at several free spectral ranges from 0.5 GHz to 300 GHz. Depolarized backscattering spectra are converted into susceptibility featuring the evolution of the α -relaxation peak, yielding structural relaxation times τ_{α} from 10 ps to 1 ns. We have also developed photon correlation spectroscopy (PCS) in a DAC, giving τ_{α} from ~ 1 μ s to 1 s. We fit τ_{α} over these many decades with a modified VFTH equation $\tau_{\alpha} = \tau_0 \exp[DP/(P_0-P)]$ giving parameters $\tau_0 = 9.2$ ps, D= 17.5, and $P_0 = 4.5$ GPa at 75°C. After the α -relaxation peak moves into lower frequencies $(P \sim 1 \text{ GPa})$, we observe the emergence of the β -relaxation minimum region. We fit the β -minimum to a power law scaling form $\chi''(\omega) = b(\omega/\omega_{\min})^a + a(\omega_{\min}/\omega)^b$. Polarized backscattering and forward scattering gives frequency shift $\omega_{\rm B}$ and linewidth $\Gamma_{\rm B}$ values of the longitudinal acoustic modes at two different q. We observe that the usual peak in linewidths does not coincide with $\omega_{\rm B} \tau_{alpha} \approx 1$, indicating that the longitudinal acoustic modes do not couple with structural relaxation. Tansverse acoustic modes also appear in the depolarized forward scattering spectra.

¹NSF Grant Number: DMR 0552944

Tim Ransom University of Arkansas

Date submitted: 15 Nov 2013

Electronic form version 1.4