Site specific spin dynamics in $\text{BaFe}_2\text{As}_2$1 PRISCILA ROSA, University of California at Irvine, Universidade Estadual de Campinas, CRIS ADRIANO, THALES GARITEZI, Universidade Estadual de Campinas, TED GRANT, ZACHARY FISK, University of California at Irvine, RICARDO URBANO, PASCOAL PAGLIUSO, Universidade Estadual de Campinas — The role of structural parameters in low-symmetry layered systems, such as iron pnictides/chalcogenides (Fe-Pn/Ch), cuprates and some heavy fermions, has become crucial for the understanding of their properties. Here, we combine macroscopic techniques and electron spin resonance to study the spin-density wave (SDW) phase suppression due to changes of structural parameters in $\text{Ba}_{1-x}\text{Eu}_x\text{Fe}_{2-y}\text{M}_y\text{As}_2$ single crystals ($\text{M} = \text{Co, Cu, Mn, Ni, and Ru}$). We show that for all transition metal substitutions, there is an increasing anisotropy and localization of the Fe 3d electrons at the FeAs plane. This increasing planar xy/x^2-y^2 symmetry seems to be a propitious ingredient for the emergence of superconductivity in this class of materials.

1FAPESP-SP, AFOSR MURI, CNPq and FINEP-Brazil.

Pascoal Pagliuso
Universidade Estadual de Campinas

Date submitted: 15 Nov 2013
Electronic form version 1.4