Abstract Submitted for the MAR14 Meeting of The American Physical Society

Magneto Transport of CVD Carbon in Artificial Opals¹ LEI WANG, Physics and Astronomy, USC, Columbia, SC 29208, MING YIN, FAUZI ARAMMASH, Physics/Engineering, Benedict College, Columbia, SC 29204, TIMIR DATTA, Physics and Astronomy, USC, Columbia, SC 29208 — Magneto-transport of carbon inverse opal structures were investigated in the 2.5 to 300 K temperatures and magnetic fields in the 0-10T regime. Qualitatively, our observations lie between those reported by previous researchers. Over this temperature range, transport (in zero magnetic field) is non-metallic; the resistance decreased with rising temperature however the temperature dependent behavior is not activated, as observed with variable range hopping. In three-dimensions, such behavior can also be the result of weak localization and electron-electron interactions; in particular the change in conductivity is a polynomial in fractional powers of absolute temperature. At subhelium temperature regimes the relative magneto resistance is measured to be \sim 0.1 percent per Tesla. Results of data analysis for several different scenarios will be reported.

¹DOD award #60177-RT-H from the ARO

Ming Yin Physics/Engineering, Benedict College, Columbia, SC 29204

Date submitted: 15 Nov 2013

Electronic form version 1.4