Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

Room-Temperature Ferroelectricity in Hexagonal TbMnO$_3$ Thin Films

TULA R. PAUDEL, DONG JIK KIM, HAIDONG LU, J.D. BURTON, University of Nebraska, Lincoln, NE, JOHN G. CONNELL, University of Kentucky, KY 40506, EVGENY Y. TSYMBAL, University of Nebraska, Lincoln, NE, S.S. AMBROSE SEO, University of Kentucky, KY 40506, ALEXEI GRUVERMAN, University of Nebraska, Lincoln, NE — Magnetoelectric multiferroics exhibit coupling between the ferroelectric and magnetic order parameters, allowing control of electric polarization by a magnetic field or magnetization by an electric field. This property is appealing for novel device applications but they require room-temperature functionality. Among a limited group of single-phase multiferroic materials, rare-earth manganites, such as TbMnO$_3$, are promising due to their strong magnetoelectric coupling. However, the ferroelectric transition temperature of TbMnO$_3$ in the bulk orthorhombic phase is very low. Here, we report room-temperature ferroelectricity of epitaxially-stabilized hexagonal TbMnO$_3$ thin films which is accompanied by significant polarization-dependent resistive switching. The first principle calculation and group theoretical analysis reveals that the ferroelectric polarization of hexagonal TbMnO$_3$ is associated with the lattice instability of prototypical paraelectric phase at the zone boundary and is also an improper ferroelectric similar to other manganites such as YMnO$_3$. Our results demonstrate a possibility to engineer new single-phase multiferroics by epitaxial growth, which broadens the range of functional materials desirable for novel electronic devices.