Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

First Principles Investigation of Li/Fe-Oxide as a High Energy Material for Hybrid All-in-One Li-ion/Li-O2 Batteries

ALPER KINC, LYNN TRAHEY, MICHAEL M. THACKERAY, Argonne National Laboratory, SCOTT KIRKLIN, CHRISTOPHER WOLVERTON, Northwestern University, MARIA K.Y. CHAN, Argonne National Laboratory, CENTER FOR ELECTRICAL ENERGY STORAGE COLLABORATION — We recently introduced a vision for high energy all-in-one electrode/electrocatalyst materials that can be used in hybrid Li-ion/Li-O2 (Li-air) cells [1]. Recent experiments using Li$_5$FeO$_4$ demonstrated substantially smaller voltage polarizations and hence higher energy efficiency compared to standard Li-O$_2$ cells forming Li$_2$O$_2$ [2]. The mechanism by which the charge process activates the Li$_5$FeO$_4$, however, is not well understood. Here, we present first principles density functional theory (DFT) calculations to establish the thermodynamic conditions for the extraction of Li/Li+O from Li$_5$FeO$_4$. A step-by-step, history-dependent, removal process has been followed and the stability of the Li and Li+O deficient samples is investigated on the basis of the energies of the extraction reactions. Various stages of Li/Li+O removal are identified, and structural changes and electronic structure evolution, as well as computed XRD, XANES, and PDF characterizations are reported.

Maria K.Y. Chan
Argonne National Laboratory

Date submitted: 15 Nov 2013

Electronic form version 1.4