Strain-induced topological phase transitions in HgTe

NIRPEN-DRA SINGH, Material Science and Engineering Division, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia, RAVINDRA PANDEY, Department of Physics, Michigan Technological University, Houghton, MI 49931, USA, AMBESH DIXIT, Indian Institute of Technology Jodhpur — Mercury telluride is a known semi-metal in its bulk zinc-blende structure with electronic bandgap $E_g \sim -0.3$ eV and has been predicted to be a topological insulator under strain. In this study, we carried out ab initio electronic structure calculations to investigate the transition of HgTe system from semi-metal into the topological insulating phase under compressive strain along [001], [110] and [111] directions. The compressive strains along these directions close and reopen a gap at the Γ point and topological phase is emerged. We will discuss the evolution of topological insulator phase in the context of semimetal nature of bulk HgTe system.

1The authors would like to thank C-DAC, Pune, India for the computational resources and MHRD, Gov. of India, for financial support