Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering

MICHAEL BAKER, New York University & City College of New York

The application of inelastic neutron scattering (INS) as a microscopic probe of spin dynamics within molecular based magnets (MM) is discussed with focus on results following recent technological developments. It will be shown that recently-developed INS instrumentation enables single crystal studies of MM, yielding the four-dimensional inelastic-neutron scattering function \(S(Q_{xyz}, E) \) in vast portions of reciprocal space [1]. Such detailed information of neutron momentum transfer enables spin pair correlations within MM to be directly extracted without the need to pass through a model Hamiltonian. INS results for example MM exhibiting interesting physical properties such as magnetic spin frustration [2] and quantum tunnelling will be presented. The potential of four dimensional INS as a new probe of elusive magnetic phenomena present in MM will be explored. For example, the examination of how a quantum fluctuation propagates around a cyclic antiferromagnetic chain is presented and used to test the degree of validity of the Néel vector tunneling.
