Pairing, Pair-Breaking, and the Critical Temperature in the Cuprate Superconductors
THEODORE REBER, Brookhaven National Lab

In conventional superconductors, the pairing strength sets the majority of the physical properties including the superconducting transition temperature, T_C. However, the cuprates show no such link between the pairing interactions and T_C. Using a new variant of photoelectron spectroscopy, we measure both the pair-forming (Δ) and pair-breaking (Γ_S) processes with greatly improved accuracy over a wide range of doping and temperatures. We find that, across the phase diagram, Δ directly scales with the temperature marking the onset of pairing, T_{Pair}, rather than those for the onsets of superconductivity, T_C, or the pseudogap, T^*. Instead, T_C is set by a simple ratio of $\Delta(T_C)$ and $\Gamma_S(T_C)$, in contrast to conventional superconductivity in which the pairing alone, $\Delta(T=0)$, sets T_C. This finding shows the pair-breaking processes are a critical limiting factor for superconductivity in the cuprates. Finally, we will discuss the merits of the potential candidates for the origin of Γ_S.