MAR14-2013-020328

Abstract for an Invited Paper for the MAR14 Meeting of the American Physical Society

Conversion of solar into chemical energy on plasmonic metal nanostructures

SULJO LINIC, University of Michigan

We will show that composite photo-catalysts combing plasmonic metallic nanoparticles of noble metals and semiconductor nanostructures exhibit improved photo-chemical activity compared to conventional photo-catalytic materials [1,2]. We will also show that plasmonic silver nanoparticles, optically excited with low intensity visible light, exhibit direct photo-catalytic activity in a number of oxidation reactions. We will discuss underlying mechanisms associated with these phenomena and predictive models that can capture the outcome of chemical transformations on these materials [2-4]. We propose that this new family of plasmonic metal photo-catalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photo-catalytic processes on semiconductors. I will show an example of such a process [5].

[1] D. B. Ingram, S. Linic, **JACS**, 133, 5202, 2011.

[2] Suljo Linic, Phillip Christopher and David B., Nature Materials, 10, 911, 2011.

[3] Ingram P. Christopher, H. Xin, S. Linic, Nature Chemistry, 3, 467, 2011.

[4] P. Christopher, H. Xin, M. Andiappan, S. Linic, Nature Materials, 11, 1044, 2012.

[5] M. Andiappan, J. Zhang, S. Linic, Science, 339, 1590, 2013