MAR14-2013-020489

Abstract for an Invited Paper for the MAR14 Meeting of the American Physical Society

Exploration of surface chemistry and structure of catalysts under reaction condition and during catalysis with surface-sensitive in-situ techniques¹ FRANKLIN (FENG) TAO, University of Notre Dame

In heterogeneous catalysis, each catalytic event occurs on a catalytic site. The catalytic site typically consists of a couple of or a few atoms of a catalyst which pack into a structure to offer specific electronic state to turn on a catalytic reaction. Surface structure and chemistry are the key for understanding a catalytic mechanism. From thermodynamic point of view, the surface structure of a catalyst depends on the environment of reactant gases or liquid around the catalyst. Thus, the surface chemistry and structure of a catalyst under a reaction condition or during catalysis (in an environment of reactant(s) with certainly pressure) could be different from those from ex-situ studies. In-situ surface science characterization techniques have been developed for disclosing the hidden surface chemistry and structure of catalysts under reaction conditions or during catalysis. In-situ ambient pressure XPS (AP-XPS) and ambient pressure STM (AP-STM) are two of these surface-sensitive techniques appropriate for exploring surface chemistry and structure, respectively. In this talk, I will present the origin of pressure dependent surface chemistry and structure from thermodynamic point of view. AP-XPS and AP-STM techniques will be introduced briefly. I will focus on (1) the evolution of surface composition and oxidation state of a reducible oxide and how the evolution is correlated to the corresponding catalytic performances, (2) the distribution of surface elements on surface of a bimetallic catalyst under a reaction condition and how a restructuring is used to generate a new surface with different catalytic performance, and (3) geometric restructuring of a metal catalyst surface at atomic scale and how it is related to its catalytic performances.

¹This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under the grant DE-FG02-12ER1635.