Abstract Submitted for the MAR14 Meeting of The American Physical Society

Gate bias stress-induced threshold voltage instability of exfoliated multi-layer MoS_2 field effect transistors KYUNGJUNE CHO, WOANSEO PARK, TAE-YOUNG KIM, TAKHEE LEE, Seoul Natl Univ — Recently, MoS₂ has attracted great attention due to its intriguing electrical properties. MoS_2 transistors with a high on/off ratio of 10^8 have recently been demonstrated using HfO_2 as the top gate dielectric [1]. Despite the merits of MoS_2 , large variations in the properties of MoS_2 FET devices due to extrinsic effects may result in limitations in device applications. Here, we investigated the gate bias stress effects of exfoliated multi-layered MoS₂ FETs. We observed that when a positive gate bias stress was applied to the device, the current decreased and the threshold shifted in the positive gate bias direction and vice versa. The electrical instability of the MoS_2 FETs was influenced by the measurement conditions. These phenomena can be explained by the charge trapping due to the adsorption or desorption of oxygen and/or water on the MoS_2 surface with a positive or negative gate bias, respectively, under an ambient environment. Our study will be helpful in understanding the electrical-stress-induced instability of the MoS_2 -based electronic devices [2].

[1] B. Radisavljevic et al., Nat. Nanotechnol. 6, 147(2011).

[2] K. Cho et al., ACS Nano, 7, 7751(2013).

Kyungjune Cho Seoul Natl Univ

Date submitted: 06 Jan 2014

Electronic form version 1.4