Electron-Phonon Coupling in Alkali Doped Bilayer Graphene

Studied by ARPES JAMES KLEEMAN, Tohoku University, KATSUAKI SUGAWARA, Tohoku University WPI, TAKAFUMI SATO, Tohoku University, TAKASHI TAKAHASHI, Tohoku University, Tohoku University WPI — Graphene intercalation compounds are a class of materials consisting of stacked graphene sheets, with dopant adatoms ordered in-between them. These materials exhibit an unusual superconducting state, for which characteristic electron-phonon coupling has been suggested. Recent advances in angle-resolved photoemission spectroscopy (ARPES) have enabled high precision measurement of electron-phonon coupling in GICs. Coupling at the graphite-derived π bands was found to be highly anisotropic in the GIC KC\textsubscript{8}, being much stronger in the K-M than K-Γ directions [1]. This unusual anisotropy is not predicted by previous superconducting theories. A much smaller anisotropy has also been seen in recent studies of K-doped graphene monolayers [2].

In order to examine the presence of anisotropic coupling in the graphene-metal system, we have performed ARPES on the bilayer graphene GIC [3]. We have found that C\textsubscript{8}RbC\textsubscript{8} exhibits strong, anisotropic coupling, similar to that in GICs. The origin of this coupling, as well as its relation to possible superconductivity in ultrathin GICs is discussed.

Thomas Kleeman
Tohoku University

Date submitted: 08 Jan 2014

Electronic form version 1.4