Abstract Submitted for the MAR14 Meeting of The American Physical Society

Insulator-quantum Hall transition and Dirac fermion heating in low-carrier-density monolayer epitaxial graphene LUNG-I HUANG¹, YAN-FEI YANG², RANDOLPH ELMQUIST, DAVID NEWELL, National Institute of Standards and Technology, CHI-TE LIANG, National Taiwan University — We present magneto-transport measurements on ungated, low-carrier-density epitaxial graphene Hall devices at low temperatures T. At T = 4.25 K the carrier density and mobility of one device are 1.38×10^{11} cm⁻² and 6500 cm²V⁻¹s⁻¹, respectively. At low magnetic fields B, this device shows insulating behavior in the sense that the measured resistivity ρ_{xx} increases with decreasing T. A highly developed quantum Hall (QH) resistivity plateau $\rho_{xy} \approx \frac{h}{2e^2}$ corresponding to a Landau-level filling factor $\nu = 2$ in monolayer graphene can be observed at magnetic fields $B \ge 1.5$ T. Between the low-field insulator regime and the $\nu = 2$ QH state we observe a T-independent point in ρ_{xx} which corresponds to the insulator-quantum Hall (I-QH) transition. This transition, like those in semiconductor-based two-dimensional (2D) systems, can be also observed by increasing the driving current I at fixed ambient temperature. However, the measured ρ_{xx} at the I-QH transition is close to $\frac{h}{4e^2}$, rather than $\frac{h}{2e^2}$ as expected by conventional I-QH theory. Furthermore, ρ_{xx} is substantially higher than ρ_{xy} at the crossing point. By using the zero-field resistivity and weak localization effect as two independent thermometers to determine effective Dirac fermion temperature (T_{DF}) at various I, we find that $T_{DF} \sim I^{0.5}$, consistent with those obtained in various 2D systems.

¹NIST and National Taiwan University ²NIST and Georgetown University

> Randolph Elmquist NIST - Natl Inst of Stds & Tech

Date submitted: 09 Jan 2014

Electronic form version 1.4