Relativistic Navier-Stokes Equation, (Navier-Stokes Equation with Estakhr’s Correction) AHMAD REZA ESTAKHR1, Researcher — At relativistic speeds Navier-Stokes equation is incorrect unless Estakhr’s correction is included. this equation relates energy flux as vector at relativistic speeds. \((-1/c^2)\partial q/\partial t\), at low speeds Estakhr’s relativistic correction vanishes. \(\rho\gamma^3 \left(\frac{Dv}{Dt} \right) = \rho\gamma^3 (\frac{\partial v}{\partial t} + v \cdot \nabla v) = -\nabla p + \nabla \cdot T - \frac{1}{c^2} \frac{\partial q}{\partial t} + f\), where \(v\) is the flow velocity, \(\rho\) is the fluid density, \(p\) is the pressure, \(T\) is the (deviatoric) component of the total stress tensor, which has order two, \(f\) represents body forces (per unit volume) acting on the fluid,\(\nabla\) is the del operator, \(\gamma\) is the lorentz factor.

1This is corrected version of my previous abstract: (MAR15-2014-000047)