Abstract Submitted for the MAR15 Meeting of The American Physical Society

Relativistic Navier-Stokes Equation, (Navier-Stokes Equation with Estakhr's Correction) AHMAD REZA ESTAKHR¹, Researcher — At relativistic speeds Navier-Stokes equation is incorrect unless Estakhr's correction is included. this equation relates energy flux as vector at relativistic speeds. $(-1/c^2)\frac{\partial \mathbf{q}}{\partial t}$, at low speeds Estakhr's relativistic correction vanishes. $\rho\gamma^3(\frac{D\mathbf{v}}{Dt}) =$ $\rho\gamma^3(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla \mathbf{p} + \nabla \cdot \mathbf{T} - \frac{1}{c^2}\frac{\partial \mathbf{q}}{\partial t} + \mathbf{f}$, where \mathbf{v} is the flow velocity, ρ is the fluid density, p is the pressure, \mathbf{T} is the (deviatoric) component of the total stress tensor, which has order two, \mathbf{f} represents body forces (per unit volume) acting on the fluid, ∇ is the del operator, γ is the lorentz factor.

¹This is corrected version of my previous abstract: (MAR15-2014-000047)

Ahmad Reza Estakhr Researcher

Date submitted: 26 Sep 2014

Electronic form version 1.4