Abstract Submitted for the MAR15 Meeting of The American Physical Society

Trends in $(\text{LaMnO}_3)_n/(\text{SrTiO}_3)_m$ superlattices with varying layer thicknesses¹ JILILI JIWUER, FABRIZIO COSSU, UDO SCHWINGEN-SCHLÖGL, KAUST, PSE Division, Thuwal 23955-6900, Kingdom of Saudi Arabia — We investigate the thickness dependence of the structural, electronic, and magnetic properties of $(\text{LaMnO}_3)_n/(\text{SrTiO}_3)_m$ (n, m = 2, 4, 6, 8) superlattices using density functional theory. The structure relaxation turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO_3 , strongly distorted O octahedra are observed in the SrTiO_3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO_3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO_3 and SrTiO_3 layer thicknesses originates from modifications of the Ti d_{xy} states.

¹Research was supported by the King Abdullah University of Science and Technology (KAUST).

Jilili Jiwuer KAUST, PSE Division, Thuwal 23955-6900, Kingdom of Saudi Arabia

Date submitted: 14 Oct 2014

Electronic form version 1.4