Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths

BARTHOLOMEUS MACHIELSE, ADRIAN BALAN, DAVID NIEDZWIECKI, Univ of Pennsylvania, JIANXUN LIN, PEIJIE ONG, Columbia University, REBECCA ENGELKE, Univ of Pennsylvania, KENNETH SHEPARD, Columbia University, MARIJA DRNDIC, Univ of Pennsylvania — DNA sequencing using solid-state nanopores is impeded by the relatively high noise and low bandwidth of the current state-of-the-art translocation measurements. We measure the ion current noise through Si$_3$N$_4$ nanopores at bandwidths up to 1 MHz. At these bandwidths, the input-referred current noise is dominated by the amplifier’s voltage noise acting across the total capacitance at the amplifier input. By reducing the nanopore membrane capacitance we are able to transition to a regime in which current noise is dominated by the effects of the capacitance of the amplifier itself. Advances in bandwidth and signal-to-noise ratio necessary for DNA sequencing will require lower capacitance devices as well as new amplifier designs with reduced input capacitance and noise characteristics.

1This work was supported by NIH Grants R21HG004767 and R01HG006879. We gratefully acknowledge use of the TEM in the NSF-MRSEC electron microscopy facility. We thank Andrew Sharo, Matthew Puster, Dr. Kimberly Venta, and Prof. Jacob Rosenstein.

2These authors contributed equally

3These authors contributed equally

Bartholomeus Machielse
Univ of Pennsylvania

Date submitted: 30 Oct 2014

Electronic form version 1.4