Abstract Submitted
for the MAR15 Meeting of
The American Physical Society

Structural and Magnetic Properties of $\text{Mn}_{1.5}\text{X}_{0.5}\text{Sn}$ ($\text{X} = \text{Cr, Mn, Fe, Co}$) Melt-spun Ribbons

R. FUGLSBY, P. KHAREL, Department of Physics, South Dakota State University, Brookings, SD, W. ZHANG, S. VALLOPPILLY, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, Y. HUH, Department of Physics, South Dakota State University, Brookings, SD, D.J. SELLMYER, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE — $\text{Mn}_{1.5}\text{X}_{0.5}\text{Sn}$ ($\text{X} = \text{Cr, Mn, Fe, Co}$) nanomaterials in a hexagonal Ni$_2$In-type crystal structure have been prepared using arc-melting and melt spinning. All the samples show moderate saturation magnetization at 100 K with a highest value of 458 emu/cm3 for $\text{Mn}_{1.5}\text{Fe}_{0.5}\text{Sn}$, but their Curie temperatures (T_c) are less than 300 K. The highest T_c is 206 K for the Fe containing sample. All samples except the Cr containing one show irreversibility between the zero-field-cooled and field-cooled measurements at the low temperature, showing a spin reorientation or spin-glass-like behavior. The magnetic anisotropy constants calculated at 100 K are on the order of 1 Merg/cm3. The magnetic properties of these materials have substantially improved due to vacuum annealing, where the T_c for Mn$_2$Sn annealed at 450 $^\circ$C has increased by about 75 K from 190 K to 265 K.

1Research is supported by Department of Physics, SDSU. Research at UNL is supported by NSF-MRSEC Grant DMR-0820521 and DOE-BES-DMSE Grant DE-FG 02-04ER46152.

R. Fuglsby
Department of Physics, South Dakota State University, Brookings, SD

Date submitted: 31 Oct 2014
Electronic form version 1.4