Single crystal growth and study the physical properties of non-centrosymmetric UIrSi_3 SHANTA SAHA, JOHNPIERRE PAGLIONE, Center for Nano Physics and Advanced Materials, Dept. of Physics, University of Maryland, College Park, Maryland — Heavy-fermion superconductivity in the non-centrosymmetric crystal structure has drawn much attention [1]. It is theoretically argued that the order parameter contains not only a spin-singlet part, but also an admixture of a spin-triplet state. The compound UIrSi_3 crystallizes in the non-centrosymmetric BaNiSn_3 structure which is closely related to the well-known ThCr_2Si_2-type [2]. Preliminary study on polycrystalline UIrSi_3 shows antiferromagnetic order below Neel temperature $T_N = 42$ K [2]. Its lanthanide analog CeIrSi_3 shows heavy-fermion superconductivity under pressure [1]. Therefore, further investigation on UIrSi_3 would be meaningful. We will present our attempt to grow single crystal of UIrSi_3 by Czochralski method in a tetra-arc-furnace and study of its physical properties.