Unusual Magnetic Response of an S = 1 Antiferromagnetic Linear-Chain Material.1 J.S. XIA, M.W. MEISEL, Dept. of Physics and NHMFL, Univ. of Florida, A. OZAROWSKI, NHMFL, Florida State Univ., P.M. SPURGEON, A.G. GRAHAM, J.L. MANSON, Dept. of Chem. and Biochem., Eastern Washington Univ. — An S = 1 antiferromagnetic polymeric chain, [Ni(HF\textsubscript{2})(3-Clpy\textsubscript{4})\textsubscript{4}]BF\textsubscript{4} (py = pyridine), has been identified to have nearest-neighbor antiferromagnetic interaction $J/k_B = 4.86$ K and single-ion anisotropy $D/k_B = 4.3$ K, while avoiding long-range order down to 25 mK.2 With $D/J = 0.88$, this system is close to the $D/J \approx 1$ gapless quantum critical point between the topologically distinct Haldane and Large-D phases. The magnetization was studied over a range of temperatures, 50 mK $\leq T \leq 1$ K, and magnetic fields, $B \leq 10$ T. The results allow an upper bound of the critical field, B_c, which closes the Haldane gap, to be estimated. Specifically, $B_c \leq (35 \pm 10)$ mT, which is close to the predicted 46 mT,3 when using the reported2 values of J, D, and g. In low fields, the magnetic signal increases with decreasing T for 400 mK $< T < 800$ mK but is independent of T for 50 mK $\leq T \leq 400$ mK. This observation is consistent with a significant increase in the specific heat arising from the accumulation of entropy in the vicinity of the quantum critical point.

1Supported by NSF via DMR-1202033 (MWM), DMR-1306158 (JLM), and DMR-1157490 (NHMFL).