Effects of thermal disorder on electronic structure, electron-phonon coupling and spin-fluctuations in high-\(T_C\) cuprates

THOMAS JARLBORG, DPMC, University of Geneva, CH1211 Geneva 4 — The superconducting \(T_C\)’s are estimated from the values of electron-phonon and spin-phonon coupling in typical high-\(T_C\) cuprates. It is shown that the couplings are peaked for just a few q-vectors because of the 2-dimensional Fermi surface shape. The involvement of few selective spin-phonon modes compensates for the low electronic density-of-states, which allows for a high \(T_C\) [1]. Thermal disorder at moderately high temperature perturbs the strongly coupled modes through incoherent potential fluctuations of the Madelung terms, and electronic structure calculations show that the effective spin-phonon coupling suffers from lattice disorder. This effect puts a limit on long-range superconductivity, while fluctuations can persist to higher temperature. BCS-type model calculations are used to show how disorder modifies the superconducting gap and reduces \(T_C\). Some ideas of how to recuperate a higher \(T_C\) from superconducting fluctuations are discussed.


Thomas Jarlborg
DPMC, University of Geneva, CH1211 Geneva 4