Graphene Mechanical Resonators under Large Strain

SEITA ONISHI\(^1\), QIN ZHOU\(^2\), ALEX ZETTL\(^3\), Department of Physics, University of California, Berkeley, CA 94720, USA — Graphene has shown promise as a high frequency mechanical resonator due to its high Young’s modulus and light mass [1]. With large strains, theoretical predictions anticipate even changes to graphene’s band structure [2]. We developed an integrated platform to apply large strains on suspended graphene with a MEMS based actuator. We will show preliminary results on the optical detection of the change in resonance frequency as the graphene mechanical resonator is strained.


\(^1\)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
\(^2\)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
\(^3\)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy NanoSciences Institute at the University of California, Berkeley, CA 94720, USA

Seita Onishi
Department of Physics, University of California, Berkeley, CA 94720, USA

Date submitted: 07 Nov 2014
Electronic form version 1.4