3He Condensation and Dissolution at Layer Completion in 3He-4He Mixtures Adsorbed on Carbon Nanotubes GARY WILLIAMS, EMIN MENACHEKANIAN, JOHN ABRAHAM, BOB CHEN, VITO IAIA, ANDREW LI, SERGEY SUSHCHIKH, UCLA — The condensation and then dissolution of 3He has been observed at layer completion in 3He-4He mixtures adsorbed on multiwall carbon nanotubes. With an initial fill of 3.5 layers of 4He, the addition of 3He in five steps of 0.07 layers uniformly reduces T_{KT}, showing that the 3He is uniformly distributed. With the final 0.35 layer of 3He still present, additional 4He is then added at low temperature (225 mK). An abrupt transition is observed in the third sound signal very near the total-thickness 4.0 layer completion, where the Q factor suddenly drops by two orders of magnitude and the sound speed becomes constant. With the addition of another 0.1 layer of 4He the sound speed starts to decrease again and the Q climbs back to its initial value. We postulate that this behavior marks the formation of condensed 3He “islands” induced by the layer completion, and then the 3He dissolves back to uniform coverage past that point.