Abstract Submitted for the MAR15 Meeting of The American Physical Society

³He Condensation and Dissolution at Layer Completion in ³He-⁴He Mixtures Adsorbed on Carbon Nanotubes GARY WILLIAMS, EMIN MENACHEKANIAN, JOHN ABRAHAM, BOB CHEN, VITO IAIA, ANDREW LI, SERGEY SUSHCHIKH, UCLA — The condensation and then dissolution of ³He has been observed at layer completion in ³He-⁴He mixtures adsorbed on multiwall carbon nanotubes. With an initial fill of 3.5 layers of ⁴He, the addition of ³He in five steps of 0.07 layers uniformly reduces T_{KT} , showing that the ³He is uniformly distributed. With the final 0.35 layer of ³He still present, additional ⁴He is then added at low temperature (225 mK). An abrupt transition is observed in the third sound signal very near the total-thickness 4.0 layer completion, where the Q factor suddenly drops by two orders of magnitude and the sound speed becomes constant. With the addition of another 0.1 layer of ⁴He the sound speed starts to decrease again and the Q climbs back to its initial value. We postulate that this behavior marks the formation of condensed ³He "islands" induced by the layer completion, and then the ³He dissolves back to uniform coverage past that point.

> Gary Williams UCLA

Date submitted: 08 Nov 2014

Electronic form version 1.4