MoS$_2$ Transistors Operating at Gigahertz Frequencies

DARIA KRASNOZHON, DOMINIK LEMBKE, CLEMENS NYFFELER, YUSUF LEBLEBICI, ANDRAS KIS, Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL) — The presence of a direct band gap and an ultrathin form factor has caused a considerable interest in 2D semiconductors from TMD family with MoS$_2$ being the most studied representative of this family of materials. While diverse electronic elements, integrated circuits and optoelectronic devices have been demonstrated using ultrathin MoS$_2$ and related materials, very little is known about their performance at high frequencies. We fabricated top-gated MoS$_2$ transistors operating in the gigahertz range of frequencies. The presence of a band gap also gives rise to current saturation, allowing voltage gain higher than 1. The RF transistors are fabricated from exfoliated MoS$_2$ with different layer thickness. All our devices presented transconductance typical of n-type materials with on-state current reaching 300 μA/μm for $V_{ds} = 2$ V and gate voltage $V_{tg} = 10$ V in the case of monolayer MoS$_2$. The current gain of the MoS$_2$ FETs decreases with increasing frequency and shows the typical $1/f$ dependence. In conclusion, we studied top-gated MoS$_2$ transistors with a 240 nm gate length. Our MoS$_2$ RF-FETs show an intrinsic transconductance higher than 50 uS/um and a drain-source current saturation with a voltage gain higher than 1. Our devices show cut-off frequencies in the GHz range and are able not only to amplify current in this frequency range but also power and voltage, with the maximum operating frequency $f_{max} = 8.2$ GHz.