Strong Correlation of Electron Saddle Point Singularities to the Anomalous Isotope Effect in Zr, Nb$_3$Sn, and YBa$_2$Cu$_3$O$_7$1 GUANG-LIN ZHAO, Physics Department, Southern University and A&M College — Anomalously small isotope effect in some high and low T$_c$ superconductors such as Zr, Nb$_3$Sn, and YBa$_2$Cu$_3$O$_7$ (YBCO) created a great challenge for understanding. It has been shown by experiments and first-principles calculations that there exist extended saddle point singularities in the electronic structures of these materials. In this work, a new methodology is further implemented by integrating first-principles calculations of electronic structures of the materials into the theory of many-body physics for superconductivity. The aim is to seek a unified methodology to calculate the electronic and superconducting properties of these materials. It is demonstrated from first-principles that the extended saddle point singularities in Zr, Nb$_3$Sn, and YBCO strongly correlate to the anomalous isotope effect in these superconductors. However, there still exist some differences between the calculated and experimental results that require further research work.

1The work was funded in part by NSF LASIGMA Project (Award No. EPS-1003897, NSF92010-15-RII-SUBR) and by AFOSR (Award No. FA9550-09-1-0367).