Abstract Submitted for the MAR15 Meeting of The American Physical Society

Magnetic fluctuations and specific heat in $Na_x CoO_2$ near a Lifshitz Fermi surface topological transition¹ SERGEY SLIZOVSKIY, Department of Physics, Loughborough University, Loughborough LE11 3TU, UK, JOSEPH BETOURAS, Loughborough University, ANDREY CHUBUKOV, Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA — We analyze the temperature and doping dependence of the specific heat C(T) in Na_xCoO₂. This material was conjectured to undergo a Lifshitz -type topological transition at $x = x_c = 0.62$, in which a new electron Fermi pocket emerges at the Γ point, in addition to the existing hole pocket with large k_F . The data show that near $x = x_c$, the temperature dependence of C(T)/T at low T gets stronger as x approaches x_c from below and then reverses the trend and changes sign at $x \ge x_c$. We argue that this behavior can be quantitatively explained within the spin-fluctuation theory. We show that magnetic fluctuations are enhanced near x_c at momenta around k_F and their dynamics changes between $x \leq x_c$ and $x > x_c$, when the new pocket forms. We demonstrate that this explains the temperature dependence of C(T)/T. We show that at larger x (x > 0.65) the system enters a magnetic quantum critical regime where C(T)/T roughly scales as log T. This behavior extends to progressively lower T as x increases towards a magnetic instability at $x \approx 0.75$.

¹EPSRC grants EP/H049797/1 and EP/l02669X/1, DOE grant DE-FG02-ER46900 and a Leverhulme Trust visiting professorship held at Loughborough University.

Sergey Slizovskiy Department of Physics, Loughborough University, Loughborough LE11 3TU, UK

Date submitted: 10 Nov 2014

Electronic form version 1.4