Abstract Submitted
for the MAR15 Meeting of
The American Physical Society

High quality factor superconducting resonators on Si/SiGe semiconductor heterostructures1 JEFFREY CADY, XIAO MI, J.R. PETTA, Department of Physics, Princeton University, Princeton, New Jersey 08544 — The circuit quantum electrodynamics architecture may allow for the generation of entanglement between spatially separated spin qubits \cite{1}. This approach has introduced the challenge of fabricating high quality factor superconducting resonators on multilayered semiconductor substrates. Here we present electric field simulations which show that 30\% of the resonator electric field resides in the 675\,\mu m thick Si substrate on which the Si/SiGe heterostructure is grown, 55\% resides in the 3 \,\mu m thick SiGe relaxed buffer and 300 nm of Si\textsubscript{0.7}Ge\textsubscript{0.3} grown above the relaxed buffer, and 15\% resides in the remaining Si/SiGe heterostructure. We evaluate the performance of Nb coplanar waveguide resonators fabricated on top of a strained Si/SiGe quantum well at 4.2 K and 10 mK. The tested resonators exhibit a high quality factor despite the presence of an accumulated two-dimensional electron gas beneath the resonator center pin.

1K. D. Petersson \textit{et al.}, Nature \textbf{490}, 380-383 (2012).

1Supported by DARPA QuEST.

Jeffrey Cady
Department of Physics, Princeton University, Princeton, New Jersey 08544

Date submitted: 10 Nov 2014

Electronic form version 1.4