Abstract Submitted for the MAR15 Meeting of The American Physical Society

Probing defect ordering in the Curie-Weiss metallic phase of $NaxCoO2^{1}$ BEN-LI YOUNG, P.-Y. CHU, J.Y. JUANG, Dept. of Electrophysics, Natl Chiao Tung Univ., G.J. SHU, F.C. CHOU, Center for Condensed Matter Sciences, National Taiwan Univ. — Single crystals of $Na_{2/3}CoO_2$, $Na_{2/3}CoO_{1.98}$, and $Na_{0.71}CoO_2$, which are metallic Curie-Weiss paramagnets, have been investigated by nuclear magnetic resonance (NMR) techniques, in order to clarify the Na atomic ordering among these samples. By analyzing the ²³Na and ⁵⁹Co NMR spectra, we confirm that the Na vacancies arrange orderly in $Na_{2/3}CoO_{1.98}$ and $Na_{0.71}CoO_2$, so that a superlattice structure is formed due to such Na ordering. In addition, the oxygen vacancies in $Na_{2/3}CoO_{1.98}$ can be located by the NMR spectra. As for the $Na_{2/3}CoO_2$ single crystal, a long-range Na order is not observed.

 $^1\mathrm{This}$ work was supported by NSC 102-2112-M-009-008 and NSC 101-2112-M-009-015-MY2.

Ben-Li Young Natl Chiao Tung Univ

Date submitted: 11 Nov 2014

Electronic form version 1.4