Probing defect ordering in the Curie-Weiss metallic phase of \(\text{Na}_x\text{CoO}_2 \)

BEN-LI YOUNG, P.-Y. CHU, J.Y. JUANG, Dept. of Electrophysics, Natl Chiao Tung Univ., G.J. SHU, F.C. CHOU, Center for Condensed Matter Sciences, National Taiwan Univ. — Single crystals of \(\text{Na}_{2/3}\text{CoO}_2 \), \(\text{Na}_{2/3}\text{CoO}_{1.98} \), and \(\text{Na}_{0.71}\text{CoO}_2 \), which are metallic Curie-Weiss paramagnets, have been investigated by nuclear magnetic resonance (NMR) techniques, in order to clarify the Na atomic ordering among these samples. By analyzing the \(^{23}\text{Na} \) and \(^{59}\text{Co} \) NMR spectra, we confirm that the Na vacancies arrange orderly in \(\text{Na}_{2/3}\text{CoO}_{1.98} \) and \(\text{Na}_{0.71}\text{CoO}_2 \), so that a superlattice structure is formed due to such Na ordering. In addition, the oxygen vacancies in \(\text{Na}_{2/3}\text{CoO}_{1.98} \) can be located by the NMR spectra. As for the \(\text{Na}_{2/3}\text{CoO}_2 \) single crystal, a long-range Na order is not observed.

\(^{1}\text{This work was supported by NSC 102-2112-M-009-008 and NSC 101-2112-M-009-015-MY2.}\)