Abstract Submitted for the MAR15 Meeting of The American Physical Society Van der Waals Epitaxy of Two-Dimensional α -MoO₃ Nanosheets using Mica as Grown Templates¹ WANG DI, ZHOU YU, WANG MU, PENG RUWEN, XIONG XIANG, Nanjing University — The orthorhombic Molybdenum trioxide, α -MoO₃, is one kind of graphene-like layered materials. Since the great promise for future electronic and optoelectronic application, this molybdenum-based two-dimensional (2D) layer material has recently attracted much attention. In this work, we report a Van der Waals epitaxy of α -MoO₃ nanosheets on mica substrate under ambient pressure. This simple physical vapor-phase deposition process is proposed to medicate through the weak Van der Waals interaction between layered α -MoO₃ and mica substrate. As a result, the grown α -MoO₃ nanosheets, whose lateral dimension is up to 0.1mm and thickness less than 2.8 nm (about bilayer MoO₃ octahedral structure), exhibit defined lattice orientation. From bulk to bilayer, Raman spectra of α -MoO₃ nanosheets show independed with layered number, which unlike to MoS₂. The measurement of electric resistances at room temperature shows the conductance of original α -MoO₃ nanosheets is already high, moreover, which can be greatly improved by hydrogen doping. Our works indicate that VDWE with mica templates is a simple and feasible strategy to grow high-quality ultrathin α -MoO₃ nanosheets, which have superiorities for investigating its novel physical properties and potential application in future. ¹National Natural Science Foundation of China (Grant Nos. 51302268); National Natural Science Foundation of China (Grant Nos. 51472123) Xiong Xiang Nanjing University Date submitted: 11 Nov 2014 Electronic form version 1.4